- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000000010000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Belay, Kassaye (1)
-
Berry, Rajiv (1)
-
Bonn, Mischa (1)
-
Eufemio, Rosemary (1)
-
Fröhlich-Nowoisky, Janine (1)
-
Guo, Hao-Bo (1)
-
Liu, Haijie (1)
-
Meister, Konrad (1)
-
Molinero, Valeria (1)
-
Pöschl, Ulrich (1)
-
Renzer, Galit (1)
-
Royas, Mariah (1)
-
Shaw, Kaden (1)
-
Suseendran, Parkesh (1)
-
Vinatzer, Boris (1)
-
Wang, Xiaofeng (1)
-
de_Almeida_Ribeiro, Ingrid (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ice-nucleating proteins (INPs) catalyze ice formation at high subzero temperatures, with major biological and environmental implications. While bacterial INPs have been structurally characterized, their counterparts in other organisms remain unknown. Here, we identify a new class of efficient INPs in fungi. These proteins are membrane-free, adopt β-solenoid folds, and multimerize to form large ice-binding surfaces, showing mechanistic parallels with bacterial INPs. Structural modeling, sequence analysis, and functional assays show they are encoded by orthologs of the bacterial InaZ gene, likely acquired via horizontal gene transfer. Our results demonstrate that distinct lineages have independently converged on a common molecular strategy to overcome the energetic barriers of ice formation. The discovery of cell-free INPs provides tools for freezing applications and reveals biophysical constraints on nucleation across life.more » « lessFree, publicly-accessible full text available May 19, 2026
An official website of the United States government
